A comprehensive analysis of genetic risk for metabolic syndrome in the Egyptian population via allele frequency investigation and Missense3D predictions

Mahmoud Bassyouni, Mohamed Mysara Ahmed, Inken Wohlers, Hauke Busch, Maha Saber-Ayad, Mohamed El-Hadidi

Research outputpeer-review


Diabetes mellitus (DM) represents a major health problem in Egypt and worldwide, with increasing numbers of patients with prediabetes every year. Numerous factors, such as obesity, hyperlipidemia, and hypertension, which have recently become serious concerns, affect the complex pathophysiology of diabetes. These metabolic syndrome diseases are highly linked to genetic variability that drives certain populations, such as Egypt, to be more susceptible to developing DM. Here we conduct a comprehensive analysis to pinpoint the similarities and uniqueness among the Egyptian genome reference and the 1000-genome subpopulations (Europeans, Ad-Mixed Americans, South Asians, East Asians, and Africans), aiming at defining the potential genetic risk of metabolic syndromes. Selected approaches incorporated the analysis of the allele frequency of the different populations’ variations, supported by genotypes’ principal component analysis. Results show that the Egyptian’s reference metabolic genes were clustered together with the Europeans’, Ad-Mixed Americans’, and South-Asians’. Additionally, 8563 variants were uniquely identified in the Egyptian cohort, from those, two were predicted to cause structural damage, namely, CDKAL1: 6_21065070 (A > T) and PPARG: 3_12351660 (C > T) utilizing the Missense3D database. The former is a protein coding gene associated with Type 2 DM while the latter is a key regulator of adipocyte differentiation and glucose homeostasis. Both variants were detected heterozygous in two different Egyptian individuals from overall 110 sample. This analysis sheds light on the unique genetic traits of the Egyptian population that play a role in the DM high prevalence in Egypt. The proposed analysis pipeline -available through GitHub- could be used to conduct similar analysis for other diseases across populations.

Original languageEnglish
Article number20517
JournalScientific Reports
Issue number1
StatePublished - Dec 2023

ASJC Scopus subject areas

  • General

Cite this