A review of corrosion considerations of container materials relevant to underground disposal of high-level radioactive waste in Belgium

Bruno Kursten, Frank Druyts

Research outputpeer-review

Abstract

The underground formation that is currently being considered in Belgium for the permanent disposal of high-level radioactive waste and spent fuel is a 30-million-year-old argillaceous sediment (Boom Clay layer). This layer is located in the northeast of Belgium and extending under the Mol-Dessel nuclear site at a depth between 180 and 280 meter. Within the concept for geological disposal (multibarrier system), the metallic container is the primary engineered barrier. Its main goal is to contain the radioactive waste and to prevent the groundwater from coming into contact with the wasteform by acting as a tight barrier. The corrosion resistance of container materials is an important aspect in ensuring the tightness of the metallic container and therefore plays an important role in the safe disposal of HLW. The metallic container has to provide a high integrity, i.e. no through-the-wall corrosion should occur, at least for the duration of the thermal phase (500 years for vitrified HLW and 2000 years for spent fuel). An extensive corrosion evaluation programme, sponsored by the national authorities and the European Commission, was started in Belgium in the mid 1980's. The main objective was to evaluate the long-term corrosion performance of a broad range of candidate container materials. In addition, the influence of several parameters, such as temperature, oxygen content, groundwater composition (chloride, sulphate and thiosulphate), γ-radiation, ... were investigated. The experimental approach consisted of in situ experiments (performed in the underground research facility, HADES), electrochemical experiments, immersion experiments and large scale demonstration tests (OPHELIE, PRACLAY). Degradation modes considered included general corrosion, localised corrosion (pitting) and stress corrosion cracking. This paper gives an overview of the more relevant experimental results, gathered over the past 25 years, of the Belgian programme in the field of container corrosion.

Original languageEnglish
Title of host publication29th International Symposium on the Scientific Basis for Nuclear Waste Management XXIX
PublisherMRS - Materials Research Society
Pages805-812
Number of pages8
ISBN (Print)1558998896, 9781558998896
DOIs
StatePublished - 2006
Event2005 - MRS : 29th International Symposium on the Scientific Basis for Nuclear Waste Management - Gent
Duration: 12 Sep 200516 Sep 2005

Publication series

NameMaterials Research Society Symposium Proceedings
Volume932
ISSN (Print)0272-9172

Conference

Conference2005 - MRS
Abbreviated titleMRS2005
Country/TerritoryBelgium
CityGent
Period2005-09-122005-09-16

ASJC Scopus subject areas

  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Cite this