An experimental methodology to assess the impact of desaturation on gas diffusion in clay based materials

Aadithya Gowrishankar, Elke Jacops, Norbert Maes, Pieter Verboven, Hans Janssen

Research outputpeer-review

Abstract

The transport of gas in clay-based materials is dominated by diffusion. SCK CEN has studied and recorded an extensive data set of diffusion coefficients of gases in various saturated clays (Boom Clay, Opalinus Clay, Callovo-Oxfordian claystone and bentonites) used in Europe as host formations or in engineered barrier systems in the context of deep geological disposal of high and intermediate level nuclear wastes. However, partially saturated conditions may exist during the life cycle of a radioactive waste repository. The current study aims at establishing an experimental method to measure the diffusion coefficients of various gases in partially saturated clay-based materials by means of double through diffusion tests (cross diffusion of gases across the porous sample, driven by concentration gradients) and to assess the impact of desaturation on gas diffusivity. Historically, gas diffusion measurements have been performed under dissolved conditions with continuous water and dissolved gas flow around the clay sample. However, since the saturation degree of the sample has to be constant, a novel setup has been designed and optimized to operate under a pure gas phase under controlled relative humidity (RH). The experimental concept consists of cross diffusion of gas mixtures from two reservoirs at a fixed relative humidity on either side of the sample cell, namely, the upstream and downstream reservoirs. The RH is controlled using the same saturated salt solutions in both reservoirs. During the experiment, gases will diffuse from the upstream to the downstream reservoir. By measuring the change in gas composition in the downstream reservoir with a gas analyzer equipped with a mass spectrometer (which expresses the gas composition in terms of partial pressure), the gas flux and hence the diffusion coefficient is estimated by applying steady state Fick’s first law. The experimental methodology has been validated by performing an experiment on a sandy-clay sample of known petrophysical properties, at full saturation.
Original languageEnglish
Article number20001
Number of pages5
JournalE3S Web of Conferences
Volume382
DOIs
StatePublished - 24 Apr 2023
Event2023 - UNSAT : 8th International Conference on Unsaturated Soils “Towards Unsaturated Soils Engineering - Milos Conference Center "George Eliopoulos", Milos
Duration: 2 May 20235 May 2023
https://www.erasmus.gr/microsites/1259

ASJC Scopus subject areas

  • General Environmental Science
  • General Energy
  • General Earth and Planetary Sciences

Cite this