TY - GEN
T1 - An optimized strategy for the management of spent steam generators
AU - Cantrel, Eric
AU - Denissen, Luc
AU - Davain, Henri
AU - Leveau, Jean Phillipe
AU - Lauwers, Johan
AU - Gillet, Thierry
PY - 2009
Y1 - 2009
N2 - The decommissioning of the BR3 (Belgian Reactor 3) approaches its final phase. The electro-mechanical dismantling is almost completed and the program related to the decontamination of the building structures has been initiated. The issue of the evacuation of the primary circuit large components, and more specifically of the Steam Generator (SG), has been dealt successfully, applying innovative technologies to lead to remarkable results in terms of waste volume minimization and occupational radiation exposure. The strategy applied for the evacuation of the BR3 SG resulted from the elaboration and comparison of the following scenarios : • Closed loop chemical decontamination prior to dismantling, cutting and unconditional release or release after melting, • Cutting of the components without decontamination and evacuation of the materials in their respective waste categories, • Cutting, decontamination of the SG secondary side and evacuation of the full SG primary side to the melting facility for recycling. While the availability of the in-house developed MEDOC® process made the clearance of the SG bundle technically feasible, nuclear safety requirements and financial aspects were also in favour of the closed loop decontamination: minimization of contamination spreading and staff exposure during all subsequent manipulations, minimization of radwaste costs. For the segmentation of this component, different techniques have been considered : • An abrasive water jet (AWJ) cutting tool, • A prototype diamond wire developed for this application. The diamond wire allowed to cut in a single pass both the carbon steel shell and the stainless steel tube bundle. While the implementation of the diamond wire saw is rather simple, working conditions must be optimised to limit wearing of the wire and secondary waste production. Existing experience can be extrapolated to different legal frameworks in order to propose a financially and technically optimised "all-in" strategy for the management of "spent" SG.
AB - The decommissioning of the BR3 (Belgian Reactor 3) approaches its final phase. The electro-mechanical dismantling is almost completed and the program related to the decontamination of the building structures has been initiated. The issue of the evacuation of the primary circuit large components, and more specifically of the Steam Generator (SG), has been dealt successfully, applying innovative technologies to lead to remarkable results in terms of waste volume minimization and occupational radiation exposure. The strategy applied for the evacuation of the BR3 SG resulted from the elaboration and comparison of the following scenarios : • Closed loop chemical decontamination prior to dismantling, cutting and unconditional release or release after melting, • Cutting of the components without decontamination and evacuation of the materials in their respective waste categories, • Cutting, decontamination of the SG secondary side and evacuation of the full SG primary side to the melting facility for recycling. While the availability of the in-house developed MEDOC® process made the clearance of the SG bundle technically feasible, nuclear safety requirements and financial aspects were also in favour of the closed loop decontamination: minimization of contamination spreading and staff exposure during all subsequent manipulations, minimization of radwaste costs. For the segmentation of this component, different techniques have been considered : • An abrasive water jet (AWJ) cutting tool, • A prototype diamond wire developed for this application. The diamond wire allowed to cut in a single pass both the carbon steel shell and the stainless steel tube bundle. While the implementation of the diamond wire saw is rather simple, working conditions must be optimised to limit wearing of the wire and secondary waste production. Existing experience can be extrapolated to different legal frameworks in order to propose a financially and technically optimised "all-in" strategy for the management of "spent" SG.
KW - BR3 dismantling project
KW - Steam generator
KW - Dismanteling
KW - Decontamination
KW - MEDOC
UR - http://www.scopus.com/inward/record.url?scp=77952942470&partnerID=8YFLogxK
U2 - 10.1115/ICEM2007-7330
DO - 10.1115/ICEM2007-7330
M3 - In-proceedings paper
AN - SCOPUS:77952942470
SN - 9780791843390
T3 - Proceedings of the ICEM2007 - 11th International Conference on Environmental Remediation and Radioactive Waste Management
SP - 1283
EP - 1290
BT - Proceedings of the ICEM2007
T2 - 2007 - ICEM
Y2 - 2 September 2007 through 6 September 2007
ER -