Benchmarking of deformation and vibration measurement techniques for nuclear fuel pins

Ben De Pauw, Steve Vanlanduit, Katrien Van Tichelen, Thomas Geernaert, Karima Chah, Francis Berghmans

    Research outputpeer-review

    Abstract

    Understanding the mechanical interactions between the coolant and the core structure in nuclear reactors helps to determine the lifetime, health or optimal design of the reactor core. The flow of the coolant produces vibrations in the reactor core containing the fuel assemblies that consists of a matrix of fuel pins. We report on an evaluation of the performance of different vibration measurement techniques considered for measuring the flow induced vibrations on the fuel pin mock-up. These techniques include a SLDV, a grid method, FBGs, electrical strain gages and 2 types of accelerometers. In this paper we first show the practical aspects of the validation experiments before proceeding with the influence of the tecniques on the pin dynamics. Finally we compare the SNR and R² levels of the sensors for low amplitudes and low frequencies. We conclude that for our setup the optical techniques and MEMS-type accelerometer prove to offer superior performance. Considering the space constraints, we believe that the FBGs are the best candidate for vibration monitoring in nuclear reactor core mick-ups.
    Original languageEnglish
    Pages (from-to)3647-3653
    JournalMeasurement
    Volume46
    Issue number9
    DOIs
    StatePublished - Nov 2013

    Cite this