Abstract
Liquid metal reactors typically employ wire wraps as spacers between the fuel pins. In the past,
design and safety calculations were largely one-dimensional and based on experimental data.
Nowadays, with modern state-of-the-art computer power and tools, three-dimensional
Computational Fluid Dynamics (CFD) simulations allow designers and safety specialists to
obtain much more detailed information on the flow and heat transport in liquid metal cooled fuel
assemblies, obviously in close collaboration with experimental campaigns. This may lead to new
insights possibly decreasing the safety margins.
This paper intends to provide an overview on the activities in the frame of design and safety
support for wire-wrapped fuel assemblies. It all starts with validation. Therefore, validation
efforts will be shown for fuel assemblies as they are designed on the drawing board for ‘cold’
conditions. Such analyses will profit from the quantification of uncertainties and determination
of most influencing parameters. Nevertheless, in reality a fuel assembly will not be employed as
designed in ‘cold’ conditions. Therefore, they will probably deform. This requires an assessment
of the effect of deformations. Another aspect possibly occurring during operational conditions is
vibrations. State-of-the-art coupled CFD and finite element method fluid structure interaction
techniques have been developed and applied to a wire wrapped fuel pins, providing insights in
the vibration behavior of such assemblies. Apart from that, vibration experiments have been
performed at complete fuel assembly scale providing important insights to safety analysts and
designers. However, design and safety analysts will not only have to cope with operational
conditions, but also have to show the heat transport behavior under accident conditions.
Assessments of the effect and formation of blockages are necessary.
In all above cases, it should be clear that experiments and numerical simulations go hand-inhand.
Numerical simulations are used to design the experiment, the experiment is used to
validate the simulations, and the simulations are used to interpret the experimental results.
Original language | English |
---|---|
Title of host publication | 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18) |
Publisher | American Nuclear Society |
Pages | 1-14 |
Number of pages | 14 |
State | Published - 18 Aug 2019 |
Event | 2019 - NURETH: 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics - Portland Marriott Downtown Waterfront, Portland Duration: 18 Aug 2019 → 23 Aug 2019 http://epsr.ans.org/meeting/?m=285 |
Conference
Conference | 2019 - NURETH |
---|---|
Abbreviated title | NURETH18 |
Country/Territory | United States |
City | Portland |
Period | 2019-08-18 → 2019-08-23 |
Internet address |