Cu filtration for dose reduction in neonatal chest imaging

Kristien Smans, Lara Struelens, Marleen Smet, Hilde Bosmans, Filip Vanhavere

    Research outputpeer-review


    As neonatal chest images are frequently acquired to investigate the life-threatening lung diseases in prematurely born children, their optimisation in terms of X-ray exposure is required. The aim of this study was to investigate whether such doseoptimisation studies could be performed using a Monte Carlo computer model. More specifically, a Monte Carlo computer model was used to investigate the influence of Cu filtration on image quality and dose in neonatal chest imaging. Monte Carlo simulations were performed with the MCNPX code and used with voxel models representing prematurely born babies (590 and 1910 g). Physical image quality was derived from simulated images in terms of the signal difference-to-noise ratio and signal-to-noise ratio (SNR). To verify the simulation results, measurements were performed using the Gammex 610 Neonatal Chest Phantom, which represents a 1–2 kg neonate. A figure of merit was used to assist in evaluating the optimum balance between the image quality and the patient dose. The results show that the Monte Carlo computer model to investigate dose and image quality works well and can be used in dose-optimisation studies for real clinical practices. Optimum balance between patient dose and image quality is found to be 60 kVp (using extra filtration).
    Original languageEnglish
    Pages (from-to)1-6
    JournalRadiation protection dosimetry
    StatePublished - 24 Feb 2010
    EventThird Malmö Conference - CEC, Malmö
    Duration: 25 Jun 200927 Jun 2009

    Cite this