Design Optimization of Instrumented Strikers for Charpy V-Notch Pendulum Impact Testing

Research outputpeer-review


The Charpy impact test was originally devised to measure the amount of energy absorbed by a material during fracture. Instrumentation of the striker extended the scope of this inexpensive dynamic test significantly. By not only recording the absorbed energy but also the force applied to the specimen as a function of time, additional information about the material’s properties is obtainable. At present day however, no internationally accepted procedure to calibrate or verify the measured dynamic force exists. From an engineering viewpoint, an instrumented striker for which a static force calibration is sufficient to accurately measure the force applied to the specimen during a Charpy impact test would be ideal. To investigate if such an instrumented striker can be designed, the influence of the striker geometry, the location of the strain gauges and the static force calibration procedure on the force measured by an instrumented ISO striker is assessed using finite element analysis. It is demonstrated that when the strain gauge bridge on the striker is sensitive to the load distribution at the striking edge, the voltage response for the Charpy impact test deviates from the static force calibration curve and the conversion of the voltage readout to force values introduces an error in the force value and hence a discrepancy between computed and angle-based energy. A striker with a height of 12 mm and strain gauges positioned at 17 mm from the striking edge is nearly insensitive to the load distribution and a static force calibration is sufficient to accurately measure the force during an impact test.
Original languageEnglish
Pages (from-to)1613-1630
Number of pages18
JournalJournal of Testing and Evaluation
Issue number3
StatePublished - 1 May 2021

Cite this