Abstract
Development of refractory metals for application as plasma-facing armour material remains
among priorities of fusion research programmes in Europe, China and Japan. Improving
the resistance to high temperature recrystallization, enhancing material strength to sustain
thermal fatigue cracking and tolerance to neutron irradiation are the key indicators used
for the down selection of materials and manufacturing processes to be applied to deliver
engineering materials. In this work we investigate the effect of neutron irradiation on
mechanical properties and microstructure of several tungsten grades recently developed.
Neutron irradiation campaign is arranged for screening purposes and therefore is limited
to the fluence relevant for the ITER plasma facing components. At the same time, the
neutron exposure covers a large span of irradiation temperatures from 600 up to 1000 ◦C.
Four different grades are included in the study, namely: fine-grain tungsten strengthened by
W-carbide (W–4wt.% W2C), fine-grain tungsten strengthened by Zr carbides (W–0.5% ZrC),
W alloyed with 10 at.% chromium and 0.5 at.% yttrium (W–10Cr–0.5Y) and technologically
pure W plate manufactured according to the ITER specification by Plansee (Austria). The
strengthening by W2C and ZrC particles leads to an enhanced strength, moreover, the
W–0.5ZrC material exhibits reduced DBTT (compared to ITER specification grade) and is
available in the form of thick plate (i.e. high up-scaling potential). The W–10Cr–0.5Y grade
is included as the material offering the self-passivation protection against the high temperature
oxidation.
Original language | English |
---|---|
Article number | 086035 |
Pages (from-to) | 1-17 |
Number of pages | 17 |
Journal | Nuclear Fusion |
Volume | 62 |
Issue number | 8 |
DOIs | |
State | Published - 27 Jun 2022 |