Divertor of the European DEMO: engineering and technologies for power exhaust

J.-H. You, Guiseppe Mazzone, Eliseo Visca, H. Greuner, M. Fursdon, Y. Addab, Christian Bachmann, Tom Barrett, U. Bonavolontà, Bernd Böswirth, Francesca Maria Castrovinci, C. Carelli, D. Coccorese, Roberto Coppola, Fabio Crescenzi, G. Di Ginonimo, P.A. Di Maio, G. Di Mambro, F. Domptail, D. DongiovanniG. Dose, Davide Flammini, L. Forest, Paolo Frosi, F. Gallay, Bradut-Eugen Ghidersa, C. Harrington, K. Hunger, V. Imbriani, M. Li, Adomas Lukenskas, Antonio Maffucci, N. Mantel, Domenico Marzullo, Triestino Minniti, Alexander von Müller, S. Noce, M.T. Porfiri, A. Suartararo, Marianne Richou, S. Roccella, Dmitry Terentyev, Amelia Tincani, Eugenio Vallone, S. Ventre, Rosaria Villari, F. Villone, Christian Vorpahl, K. Zhang

    Research outputpeer-review


    In a power plant scale fusion reactor, a huge amount of thermal power produced by the fusion reaction and external heating must be exhausted through the narrow area of the divertor targets. The targets must withstand the intense bombardment of the diverted particles where high heat fluxes are generated and erosion takes place on the surface. A considerable amount of volumetric nuclear heating power must also be exhausted. To cope with such an unprecedented power exhaust challenge, a highly efficient cooling capacity is required. Furthermore, the divertor must fulfill other critical functions such as nuclear shielding and channeling (and compression) of exhaust gas for pumping. Assuring the structural integrity of the neutron-irradiated (thus embrittled) components is a crucial prerequisite for a reliable operation over the lifetime. Safety, maintainability, availability, waste and costs are another points of consideration.
    In late 2020, the Pre-Conceptual Design activities to develop the divertor of the European demonstration fusion reactor were officially concluded. On this occasion, the baseline design and the key technology options were identified and verified by the project team (EUROfusion Work Package Divertor) based on seven years of R&D efforts and endorsed by Gate Review Panel.
    In this paper, an overview of the load specifications, brief descriptions of the design and the highlights of the technology R&D work are presented together with the further work still needed.
    Original languageEnglish
    Article number113010
    Number of pages36
    JournalFusion Engineering & Design
    StatePublished - Feb 2022

    Cite this