Effect of wind fluctuations on near-range atmospheric dispersion under different types of thermal stratification

Lieven Vervecken, Johan Camps, Johan Meyers

    Research outputpeer-review

    Abstract

    When using the mean wind direciton in Reynolds-averaged Navier-Stokes (RANS) simulations of atmospheric dispersion, it is well documented that peak concentration levels are often overestimated, and lateral spreading underestimated. Recently, it has been illustrated for neutrally stratified boundary layers that simulations improve significantly when the effective variability of wind directions, obtained by reducing the variability observed in experiments with the fluctuations predicted in the RANS turbulence model, is included in the boundary conditions. In the current work, we extend this approach towards thermally stratified boundary layers. We test the approach by performing a series of dispersion simulations of the Project Prairie Grass experiments, and demonstrate that also under these conditions the simulations improve markedly.
    Original languageEnglish
    Title of host publicationProceedings of the 15th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes
    Place of PublicationMadrid, Spain
    Pages772-777
    StatePublished - May 2013
    Event15th international conference on harmonisation within atmospheric dispersion modelling for regulatory purposes - HARMO, Madrid
    Duration: 6 May 20139 May 2013

    Conference

    Conference15th international conference on harmonisation within atmospheric dispersion modelling for regulatory purposes
    Country/TerritorySpain
    CityMadrid
    Period2013-05-062013-05-09

    Cite this