Evolution of fission-fragment mass distributions in the neutron-deficient lead region

Lars Ghys, Andrei N. Andreyev, Mark Huyse, Piet Van Duppen, Simon Sels, B. Andel, S. Antalic, A. Barzakh, L. Capponi, T.E. Cocolios, X. Derkx, H. De Witte, J. Elseviers, D.V. Fedorov, V.N. Fedosseev, F. P. Hessberger, Z. Kalaninova, U. Köster, J.F.W Lane, V. LiberatiK.M. Lynch, B.A. Marsh, S. Mitsuoka, P. Möller, Y. Nagame, K. Nishio, S. Ota, Dieter Pauwels, R.D. Page, Lucia Popescu, D. Radulov, M.M. Rajabali, J. Randrup, E. Rapisarda, S. Rothe, K. Sandhu, M.D. Seliverstov, A.M. Sjödin, V.L. Truesdale, C. Van Beveren, P. Van den Bergh, Y. Wakabayashi, M. Warda

    Research outputpeer-review

    Abstract

    Low-energy beta-delayed fission of 194,196At and 200,202Fr was studied in detail at the mass separator ISOLDE at CERN. The fission-fragment mass distributions of daughter nuclei 194,196Po and 202Rn indicate a triple-humped structure, marking the transition between asymmetric fission of 178,180Hg and symmetric fission in the light Ra-Rn nuclei. Comparison with the macroscopic-microscopic finite-range liquid-drop model and the self-consistent approach employing the Gogny D1S energy density functional yields discrepancies. This demonstrates once more the need for dynamical fission calculations, because for both models the potential-energy surfaces lack pronounced structures, in contrast to those for the actinide region.
    Original languageEnglish
    Pages (from-to)1-6
    JournalPhysical Review C
    Volume90
    Issue number041301
    DOIs
    StatePublished - 15 Oct 2014

    Cite this