Abstract
The quasi-SU(3) sequence of the positive parity νg9/2,d5/2,s1/2 orbitals above the N=40 shell gap are assumed to induce strong quadrupole collectivity in the neutron-rich Fe (Z=26) and Cr (Z=24) isotopes below the nickel region. In this paper the position and strength of these single-particle orbitals are characterized in the neighborhood of 68Ni (Z=28, N=40) through the 66Ni(d,p)67Ni one-neutron transfer reaction at 2.95 MeV/nucleon in inverse kinematics, performed at the REX-ISOLDE facility in CERN. A combination of the Miniball γ-array and T-REX particle-detection setup was used and a delayed coincidence technique was employed to investigate the 13.3-μs isomer at 1007 keV in 67Ni. Excited states up to an excitation energy of 5.8 MeV have been populated. Feeding of the νg9/2 (1007 keV) and νd5/2 (2207 keV and 3277 keV) positive-parity neutron states and negative parity (νpf) states have been observed at low excitation energy. The extracted relative spectroscopic factors, based on a distorted-wave Born approximation analysis, show that the νd5/2 single-particle strength is mostly split over these two excited states. The results are also compared to the distribution of the proton single-particle strength in the 90Zr region (Z=40, N=50).
Original language | English |
---|---|
Article number | 054321 |
Journal | Physical Review C - Nuclear Physics |
Volume | 91 |
Issue number | 5 |
DOIs | |
State | Published - 20 May 2015 |
Externally published | Yes |
ASJC Scopus subject areas
- Nuclear and High Energy Physics