Experiments at the GELINA facility for the validation of the self-indication neutron resonance densitometry technique

Riccardo Rossa, Alessandro Borella, Jan Heyse, Stefan Kopecky, Pierre-Etienne Labeau, Carlos Paradela, Nicolas Pauly, Peter Schillebeeckx, Klaas van der Meer

    Research outputpeer-review


    Self-Indication Neutron Resonance Densitometry (SINRD) is a passive non-destructive method that is being investigated to quantify the 239Pu content in a spent fuel assembly. The technique relies on the energy dependence of total cross sections for neutron induced reaction. The cross sections show resonance structures that can be used to quantify the presence of materials in objects, e.g. the total cross-section of 239Pu shows a strong resonance close to 0.3 eV. This resonance will cause a reduction of the number of neutrons emitted from spent fuel when 239Pu is present. Hence such a reduction can be used to quantify the amount of 239Pu present in the fuel. A neutron detector with a high sensitivity to neutrons in this energy region is used to enhance the sensitivity to 239Pu. This principle is similar to self-indication cross section measurements. An appropriate detector can be realized by surrounding a 239Pu-loaded fission chamber with appropriate neutron absorbing material. In this contribution experiments performed at the GELINA time-of-flight facility of the JRC at Geel (Belgium) to validate the simulations are discussed. The results confirm that the strongest sensitivity to the target material was achieved with the self-indication technique, highlighting the importance of using a 239Pu fission chamber for the SINRD measurements.
    Original languageEnglish
    Article number09020
    Pages (from-to)1-4
    Number of pages4
    JournalEPJ Web of Conferences
    StatePublished - 13 Sep 2017

    Cite this