Formation and evolution of MnNi clusters in neutron irradiated dilute Fe alloys modelled by a first principle-based AKMC method

Raoul Ngayam-Happy, Charlotte Becquart, Christophe Domain, Lorenzo Malerba, Nicolas Castin

    Research outputpeer-review

    Abstract

    An atomistic Monte Carlo model parameterised on electronic structure calculations data has been used to study the formation and evolution under irradiation of solute clusters in Fe–MnNi ternary and Fe–CuMnNi quaternary alloys. Two populations of solute rich clusters have been observed, which can be discriminated by whether or not the solute atoms are associated with self-interstitial clusters. Mn–Ni-rich clusters are observed at a very early stage of the irradiation in both modelled alloys, whereas the quaternary alloys contain also Cu-containing clusters. Mn–Ni-rich clusters nucleate very early via a self-interstitial-driven mechanism, earlier than Cu-rich clusters; the latter, however, which are likely to form via a vacancy-driven mechanism, grow in number much faster than the former, helped by the thermodynamic driving force to Cu precipitation in Fe, thereby becoming dominant in the low dose regime. The kinetics of the number density increase of the two populations is thus significantly different. Finally the main conclusion suggested by this work is that the so-called late blooming phases might as well be neither late, nor phases.
    Original languageEnglish
    Pages (from-to)198-207
    JournalJournal of Nuclear Materials
    Volume426
    Issue number1-3
    DOIs
    StatePublished - May 2012

    Cite this