TY - JOUR
T1 - Impact of neutron irradiation on the strength and ductility of pure and ZrC reinforced tungsten grades
AU - Yin, Chao
AU - Terentyev, Dmitry
AU - Zhang, Tao
AU - Petrov, Roumen
AU - Pardoen, Thomas
N1 - Score=10
PY - 2020/8/15
Y1 - 2020/8/15
N2 - environment,
are studied before and after neutron irradiation using uniaxial tensile tests. The first product is
a commercially pure tungsten, produced by AT&M company according to ITER specification, and the
second one is reinforced with zirconium carbide (WeZrC) particles. The addition of ZrC particles leads to
a reduction of the ductile to brittle transition temperature (DBTT) in non-irradiated conditions down to
50e100 C without loss of strength and of other attractive properties of tungsten.
The neutron irradiation was performed in the range 625e700 C up to 1.125 dpa. The tests were
performed to screen the shift of the DBTT as well as to characterize the evolution of the strength and
ductility at the irradiation temperature. In addition, a series of interrupted tensile tests were performed
in order to determine the variation of the yield strength as a function of temperature using an original
single specimen test method.
The neutron irradiation causes the reduction of the total elongation of both tungsten products. The
DBTT range, which was evaluated from the tensile test results, of WeZrC lies in the 300e500 C range
(while it is ~100 C in non-irradiated state). The DBTT range of pure tungsten is between 400 and 575 C
i.e. higher than that of WeZrC. The irradiation hardening, measured at ~600 C, which is close to the
irradiation temperature, leads to an increase of the proof stress by a factor of two in both studied grades.
Despite that the irradiation induced hardening, both products retain a total elongation of about 10% prior
to fracture. WeZrC exhibits a similar total elongation at 500 C, thus maintaining a significant ductility
resource, while pure W becomes brittle at 500 C and below.
AB - environment,
are studied before and after neutron irradiation using uniaxial tensile tests. The first product is
a commercially pure tungsten, produced by AT&M company according to ITER specification, and the
second one is reinforced with zirconium carbide (WeZrC) particles. The addition of ZrC particles leads to
a reduction of the ductile to brittle transition temperature (DBTT) in non-irradiated conditions down to
50e100 C without loss of strength and of other attractive properties of tungsten.
The neutron irradiation was performed in the range 625e700 C up to 1.125 dpa. The tests were
performed to screen the shift of the DBTT as well as to characterize the evolution of the strength and
ductility at the irradiation temperature. In addition, a series of interrupted tensile tests were performed
in order to determine the variation of the yield strength as a function of temperature using an original
single specimen test method.
The neutron irradiation causes the reduction of the total elongation of both tungsten products. The
DBTT range, which was evaluated from the tensile test results, of WeZrC lies in the 300e500 C range
(while it is ~100 C in non-irradiated state). The DBTT range of pure tungsten is between 400 and 575 C
i.e. higher than that of WeZrC. The irradiation hardening, measured at ~600 C, which is close to the
irradiation temperature, leads to an increase of the proof stress by a factor of two in both studied grades.
Despite that the irradiation induced hardening, both products retain a total elongation of about 10% prior
to fracture. WeZrC exhibits a similar total elongation at 500 C, thus maintaining a significant ductility
resource, while pure W becomes brittle at 500 C and below.
KW - Tungsten
KW - Neutron irradiation
KW - Tensile test
KW - Single specimen test
KW - DBTT
UR - https://ecm.sckcen.be/OTCS/llisapi.dll/open/39396718
U2 - 10.1016/j.jnucmat.2020.152226
DO - 10.1016/j.jnucmat.2020.152226
M3 - Article
SN - 0022-3115
VL - 537
SP - 1
EP - 15
JO - Journal of Nuclear Materials
JF - Journal of Nuclear Materials
M1 - 152226
ER -