TY - JOUR
T1 - Improved neutron activation dosimetry for fusion
AU - Terentyev, Dmitry
AU - Vasilopoulou, Theodora
AU - Stamatelatos, Ion E.
AU - Batistoni, Paola
AU - Colangeli, A.
AU - Flammini, D.
AU - Fonnesu, Nicola
N1 - Score=10
PY - 2019/2
Y1 - 2019/2
N2 - Neutron activation technique has been widely used for the monitoring of neutron fluence at the Joint European Torus (JET) whereas it is foreseen to be employed at future fusion plants, such as ITER and DEMO. Neutron activation provides a robust tool for the measurement of neutron fluence in the complex environment encountered in a tokamak. However, activation experiments previously performed at JET showed that the activation foils used need to be calibrated in a real fusion environment in order to provide accurate neutron fluence data. Triggered by this challenge, an improved neutron activation method for the evaluation of neutron fluence at fusion devices has been developed. Activation assemblies similar to those used at JET were irradiated under 14 MeV neutrons at the Frascati Neutron Generator (FNG) reference neutron field. The data obtained from the calibration experiment were applied for the analysis of activation foil measurements performed during the implemented JET Deuterium-Deuterium (D-D) campaign. The activation results were compared against thermoluminescence measurements and a satisfactory agreement was observed. The proposed method provides confidence on the use of activation technique for the precise estimation of neutron fluence at fusion devices and enables its successful implementation in the forthcoming JET Deuterium-Tritium (D–T) campaign.
AB - Neutron activation technique has been widely used for the monitoring of neutron fluence at the Joint European Torus (JET) whereas it is foreseen to be employed at future fusion plants, such as ITER and DEMO. Neutron activation provides a robust tool for the measurement of neutron fluence in the complex environment encountered in a tokamak. However, activation experiments previously performed at JET showed that the activation foils used need to be calibrated in a real fusion environment in order to provide accurate neutron fluence data. Triggered by this challenge, an improved neutron activation method for the evaluation of neutron fluence at fusion devices has been developed. Activation assemblies similar to those used at JET were irradiated under 14 MeV neutrons at the Frascati Neutron Generator (FNG) reference neutron field. The data obtained from the calibration experiment were applied for the analysis of activation foil measurements performed during the implemented JET Deuterium-Deuterium (D-D) campaign. The activation results were compared against thermoluminescence measurements and a satisfactory agreement was observed. The proposed method provides confidence on the use of activation technique for the precise estimation of neutron fluence at fusion devices and enables its successful implementation in the forthcoming JET Deuterium-Tritium (D–T) campaign.
KW - Neutron activation
KW - Neutron dosimetry
KW - JET
KW - Fusion
UR - https://ecm.sckcen.be/OTCS/llisapi.dll/overview/37525469
U2 - 10.1016/j.fusengdes.2019.01.002
DO - 10.1016/j.fusengdes.2019.01.002
M3 - Article
SN - 0920-3796
VL - 139
SP - 109
EP - 114
JO - Fusion Engineering & Design
JF - Fusion Engineering & Design
ER -