TY - JOUR
T1 - Improving americium/curium separation factors in the AmSel process through symmetry lowering of the diglycolamide extractant
AU - Kolesar, Filip
AU - Van Hecke, Karen
AU - Verguts, Ken
AU - Marie, Cécille
AU - Berthon, Laurence
AU - Binnemans, Koen
AU - Cardinaels, Thomas
N1 - Score=10
Publisher Copyright:
© 2024 The Authors. Published by American Chemical Society.
PY - 2024/12/10
Y1 - 2024/12/10
N2 - Partitioning and transmutation are important strategies for closing the nuclear fuel cycle. The diglycolamide extractant TODGA has played a major role in the development of solvent extraction processes for nuclear fuel reprocessing due to its good extraction performance, its hydrolytic and radiolytic stability, and its compliance with the CHON principle. However, due to drawbacks such as the tendency to form a third phase during extraction if no phase modifiers are used, continued research on diglycolamide-type extractants has led to the development of diglycolamides with decreased symmetry. In this study, it is shown that the recently developed diglycolamide, N,N-diisopropyl-N′,N′-didodecyldiglycolamide (iPDdDGA), is a potential alternative to TODGA with improved separation between Am and Cm or the Ln. Using the AmSel system as a reference, the extraction kinetics, influence of the acid concentration, influence of the iPDdDGA concentration, and influence of temperature were evaluated. Slope analysis indicates similar average stoichiometries for iPDdDGA and TODGA complexes, but the extraction efficiency of iPDdDGA is orders of magnitude higher. The feasibility of selective americium stripping in combination with the hydrophilic sulfonated bis-triazinyl bipyridine SO3-Ph-BTBP complexant was demonstrated. Selective stripping of americium was found to be possible, and the use of iPDdDGA gave an unexpected improvement in Am/Cm separation, with SFCm/Am values of up to 3.0. This represents a small but significant improvement compared to the 2.5 value typically found for TODGA, and it demonstrates the potential of this solvent extraction system to improve existing processes based on diglycolamide-type extractants.
AB - Partitioning and transmutation are important strategies for closing the nuclear fuel cycle. The diglycolamide extractant TODGA has played a major role in the development of solvent extraction processes for nuclear fuel reprocessing due to its good extraction performance, its hydrolytic and radiolytic stability, and its compliance with the CHON principle. However, due to drawbacks such as the tendency to form a third phase during extraction if no phase modifiers are used, continued research on diglycolamide-type extractants has led to the development of diglycolamides with decreased symmetry. In this study, it is shown that the recently developed diglycolamide, N,N-diisopropyl-N′,N′-didodecyldiglycolamide (iPDdDGA), is a potential alternative to TODGA with improved separation between Am and Cm or the Ln. Using the AmSel system as a reference, the extraction kinetics, influence of the acid concentration, influence of the iPDdDGA concentration, and influence of temperature were evaluated. Slope analysis indicates similar average stoichiometries for iPDdDGA and TODGA complexes, but the extraction efficiency of iPDdDGA is orders of magnitude higher. The feasibility of selective americium stripping in combination with the hydrophilic sulfonated bis-triazinyl bipyridine SO3-Ph-BTBP complexant was demonstrated. Selective stripping of americium was found to be possible, and the use of iPDdDGA gave an unexpected improvement in Am/Cm separation, with SFCm/Am values of up to 3.0. This represents a small but significant improvement compared to the 2.5 value typically found for TODGA, and it demonstrates the potential of this solvent extraction system to improve existing processes based on diglycolamide-type extractants.
KW - Solvent extraction
KW - Nuclear fuel cycle
KW - Americium partitioning
UR - http://www.scopus.com/inward/record.url?scp=85210357606&partnerID=8YFLogxK
U2 - 10.1021/acsomega.4c06426
DO - 10.1021/acsomega.4c06426
M3 - Article
SN - 2470-1343
VL - 9
SP - 48336
EP - 48349
JO - ACS Omega
JF - ACS Omega
IS - 49
M1 - 4c06426
ER -