Influence of Plastic Deformation on Dissolution Corrosion of Type 316L Austenitic Stainless Steel in Static, Oxygen-Poor Liquid Lead-Bismuth Eutectic at 500°C

Konstantza Lambrinou, Serguei Gavrilov, Erich Stergar, Tom Van der Donck, Shuigen Huang, Bensu Tunca, Iris De Graeve

    Research outputpeer-review

    Abstract

    This study addresses the effect of plastic deformation on the dissolution corrosion behavior of a Type 316L austenitic stainless steel. Dissolution corrosion was promoted by low oxygen conditions in liquid lead-bismuth eutectic (LBE). Specimens with controlled degree of plastic deformation (20%, 40%, and 60%) and a non-deformed, solution-annealed specimen were simultaneouslyexposedfor1,000hat500°CtostaticLBEwithlow oxygen concentration ([O] <10−11 mass%). The corroded specimens were analyzed by various material characterization techniques. All exposed specimens exhibited dissolution corrosion. The non-deformed steel showed the least dissolution attack (maximum depth: 36 μm), while the severity of attack increased with the degree of steel deformation (maximum depth in the 60% steel: 96 μm). It was, thus, concluded that increasing the amount of plastic deformation in a Type 316L stainless steel results in higher dissolution corrosion damages forsteelsexposedtolowoxygenLBEconditions.Additionally, it was observed that the presence of chemical bands and δ-ferriteinclusionsinaType316Lsteelaffecteditsdissolution corrosion behavior.
    Original languageEnglish
    Pages (from-to)1078-1090
    JournalCorrosion
    Volume73
    Issue number9
    DOIs
    StatePublished - 1 Apr 2017

    Cite this