In-vivo dosimetry for ultra-high dose rate (UHDR) electron beam FLASH radiotherapy using an organic (Plastic), an organic–inorganic hybrid and an inorganic point scintillator system

Verdi Vanreusel, Hugo Vallet, Jordi Wijnen, Benjamin Côté, Paul Leblans, Paul Sterckx, Dirk Vandenbroucke, Dirk Verellen, Luana de Freitas Nascimento

    Research outputpeer-review

    Abstract

    Dosimetry is crucial in radiotherapy to warrant safe and correct treatment. In FLASH radiotherapy, where ultra-high dose rates (UHDRs) are used, the dosimetric demands are more stringent, requiring the development and investigation of new dosemeters. In this study, three prototype fiber-optic dosemeters (FODs)—an inorganic, an organic–inorganic hybrid metal halide, and an organic (plastic) scintillator are optimized and investigated for UHDR electron irradiations. The plastic FOD is developed by Medscint, whereas the others are in-house made. The stem signal is minimized by spectral decomposition for the plastic scintillator, and by band-pass wavelength filters for the inorganic and organic–inorganic hybrid metal halide FOD. All prototypes are tested for the dose rate defining parameters. The optimal band-pass wavelength filters are found to be centered around 500 nm and 425 nm for the inorganic and organic–inorganic hybrid metal halide FODs, respectively. A sampling frequency of 1000 Hz is chosen for the inorganic and organic–inorganic hybrid metal halide FODs. The plastic FOD shows to be the least dose rate dependent with maximum deviations of 3% from the reference for the relevant beam settings. The inorganic and organic–inorganic hybrid metal halide FODs, in contrast, show large deviations of >10% from the reference and require more investigation. The current FOD prototypes are insufficient for application in UHDR electron beams, and require further development and investigation.
    Original languageEnglish
    Article number865
    Number of pages20
    JournalPhotonics
    Volume11
    Issue number9
    DOIs
    StatePublished - Sep 2024

    ASJC Scopus subject areas

    • Atomic and Molecular Physics, and Optics
    • Instrumentation
    • Radiology Nuclear Medicine and imaging

    Cite this