Abstract
Understanding the corrosion of nuclear waste glass is critical to predicting its safe disposal within a geological facility. The corrosion mechanisms and kinetics of the International Simple Glass, a simplified version of high-level nuclear waste glass, was shown to be significantly influenced by a high pH cement solution representative of disposal conditions. We provide the first microscopic characterisation of the porous, Zr-rich aluminoalkali-silica gel corrosion layer that was observed. Ca, Na and K from the cement solution were incorporated into the corrosion layer to charge compensate Si, Al and Zr species; the incorporation of Al was postulated to result in precipitation of an aluminosilicate-rich gel with large voids, facilitating rapid transport of species through the gel layer and significantly enhancing the corrosion rate. Precipitation of Al-containing zeolite and phyllosilicate phases was also observed, indicating that cementitious solutions may promote the detrimental ‘rate resumption’ stage of glass corrosion.
Original language | English |
---|---|
Article number | 5 |
Number of pages | 9 |
Journal | NPJ Materials Degradation |
Volume | 3 |
DOIs | |
State | Published - 22 Jan 2019 |