Leaching of a Cs- and Sr-Rich waste stream immobilized in alkali-activated matrices

Research outputpeer-review

Abstract

In the context of the disposal of spent radioactive fuel, heat-emitting radionuclides such as Cs and Sr are of utmost concern, as they have a major influence on the distance at which disposal galleries should be spaced apart and, thus, the cost of a disposal facility. Therefore, certain scenarios investigate the partitioning and transmutation of spent fuel to optimize the disposability of both Cs- and Sr-rich waste streams and the remaining fractions. In this study, the Cs- and Sr-rich waste stream, a nitrate-based solution, was immobilized in metakaolin and blast furnace slag-based alkali-activated matrices. These matrices were chosen for immobilization because they are known to offer advantages in terms of durability and/or heat resistance compared with traditional cementitious materials. The goal of this study is to develop an optimal recipe for the retention of Cs and Sr. For this purpose, recipes were developed following a design-of-experiments approach by varying the water-to-binder ratio, precursor, and waste loading while respecting matrix constraints. Leaching tests in deionized water showed that the metakaolin-based matrix was superior for the combined retention of both Cs and Sr. The optimal recipe was further tested under accelerated leaching conditions in an ammonium nitrate solution, which revealed that the leaching of Cs and Sr remained within reasonable limits. These results confirm that alkali-activated materials can be effectively used for the immobilization and long-term retention of heat-emitting radionuclides.
Original languageEnglish
Article number1756
Number of pages16
JournalSustainability
Volume17
Issue number4
DOIs
StatePublished - 19 Feb 2025

ASJC Scopus subject areas

  • Computer Science (miscellaneous)
  • Geography, Planning and Development
  • Renewable Energy, Sustainability and the Environment
  • Environmental Science (miscellaneous)
  • Energy Engineering and Power Technology
  • Hardware and Architecture
  • Computer Networks and Communications
  • Management, Monitoring, Policy and Law

Cite this