Modal characteristics of a flexible cylinder in turbulent axial flow from numerical simulations

Jeroen De Ridder, Joris Degroote, Katrien Van Tichelen, Paul Schuurmans, Jan Vierendeels, Steven Keijers

Research outputpeer-review

Abstract

In this paper the vibration behavior of a flexible cylinder subjected to an axial flow is investigated numerically. Therefore a methodology is constructed, which relies entirely on fluid–structure interaction calculations. Consequently, no force coefficients are necessary for the numerical simulations. Two different cases are studied. The first case is a brass cylinder vibrating in an axial water flow. This calculation is compared to experiments in literature and the results agree well. The second case is a hollow steel tube, subjected to liquid lead–bismuth flow. Different flow boundary conditions are tested on this case. Each type of boundary conditions leads to a different confinement and results in different eigenfrequencies and modal damping ratios. Wherever appropriate, a comparison has been made with an existing theory. Generally, this linear theory and the simulations in this paper agree well on the frequency of a mode. With respect to damping, the agreement is highly dependent on the correlation used for the normal friction coefficients in the linear theory.
Original languageEnglish
Pages (from-to)110-123
JournalJournal of Fluids and Structures
Volume43
DOIs
StatePublished - Nov 2013

Cite this