Modulation of gene expression in endothelial cells in response to high LET nickel ion irradiation

Michaël Beck, Charlotte Rombouts, An Aerts, Marjan Moreels, Roel Quintens, Kevin Tabury, Arlette Michaux, Ann Janssen, Mieke Neefs, Eric Ernst, Birger Dieriks, Ryonfa Lee, Winnok H. De Vos, Charles Lambert, Patrick Van Oostveldt, Sarah Baatout, Hans Vanmarcke

    Research outputpeer-review


    Ionizing radiation can elicit harmful effects on the cardiovascular system at high doses. Endothelial cells are critical targets in radiation-induced cardiovascular damage. Astronauts performing a long-term deep space mission are exposed to consistently higher fluences of ionizing radiation that may accumulate to reach high effective doses. In addition, cosmic radiation contains high linear energy transfer (LET) radiation that is known to produce high values of relative biological effectiveness (RBE). The aim of this study was to broaden the understanding of the molecular response to high LET radiation by investigating the changes in gene expression in endothelial cells. For this purpose, a human endothelial cell line (EA.hy926) was irradiated with accelerated nickel ions (Ni) (LET, 183 keV/μm) at doses of 0.5, 2 and 5 Gy. DNA damage was measured 2 and 24 h following irradiation by γ-H2AX foci detection by fluorescence microscopy and gene expression changes were measured by microarrays at 8 and 24 h following irradiation. We found that exposure to accelerated nickel particles induced a persistent DNA damage response up to 24 h after treatment.
    Original languageEnglish
    Pages (from-to)1124-1132
    JournalInternational Journal of Molecular Medicine
    Issue number4
    StatePublished - 11 Aug 2014

    Cite this