TY - JOUR
T1 - Nanostructure evolution of neutron-irradiated reactor pressure vessel steels: Revised Object kinetic Monte Carlo model
AU - Chiapetto, Monica
AU - Chiapetto, Monica
AU - Becquart, Charlotte S.
AU - Olsson, Pâr
AU - Malerba, Lorenzo
N1 - Score=10
PY - 2016/10/6
Y1 - 2016/10/6
N2 - This work presents a revised set of parameters to be used in an Object kinetic Monte Carlo model to simulate the microstructure evolution under neutron irradiation of reactor pressure vessel steels at the operational temperature of light water reactors (300 C). Within a ‘‘grey-alloy” approach, a more physical description than in a previous work is used to translate the effect of Mn and Ni solute atoms on the defect cluster diffusivity reduction. The slowing down of self-interstitial clusters, due to the interaction between solutes and crowdions in Fe is now parameterized using binding energies from the latest DFT calculations and the solute concentration in the matrix from atom-probe experiments. The mobility of vacancy clusters
in the presence of Mn and Ni solute atoms was also modified on the basis of recent DFT results, thereby removing some previous approximations. The same set of parameters was seen to predict the correct microstructure evolution for two different types of alloys, under very different irradiation conditions: an Fe-C-MnNi model alloy, neutron irradiated at a relatively high flux, and a high-Mn, high-Ni RPV steel from the Swedish Ringhals reactor surveillance
program. In both cases, the predicted self-interstitial loop density matches the experimental solute cluster density, further corroborating the surmise that the MnNi-rich nanofeatures form by solute enrichment of immobilized small interstitial loops, which are invisible to the electron microscope.
AB - This work presents a revised set of parameters to be used in an Object kinetic Monte Carlo model to simulate the microstructure evolution under neutron irradiation of reactor pressure vessel steels at the operational temperature of light water reactors (300 C). Within a ‘‘grey-alloy” approach, a more physical description than in a previous work is used to translate the effect of Mn and Ni solute atoms on the defect cluster diffusivity reduction. The slowing down of self-interstitial clusters, due to the interaction between solutes and crowdions in Fe is now parameterized using binding energies from the latest DFT calculations and the solute concentration in the matrix from atom-probe experiments. The mobility of vacancy clusters
in the presence of Mn and Ni solute atoms was also modified on the basis of recent DFT results, thereby removing some previous approximations. The same set of parameters was seen to predict the correct microstructure evolution for two different types of alloys, under very different irradiation conditions: an Fe-C-MnNi model alloy, neutron irradiated at a relatively high flux, and a high-Mn, high-Ni RPV steel from the Swedish Ringhals reactor surveillance
program. In both cases, the predicted self-interstitial loop density matches the experimental solute cluster density, further corroborating the surmise that the MnNi-rich nanofeatures form by solute enrichment of immobilized small interstitial loops, which are invisible to the electron microscope.
KW - Object kinetic Monte Carlo
KW - RPV steels
KW - Radiation-induced defects
KW - Neutron irradiation
UR - http://ecm.sckcen.be/OTCS/llisapi.dll/open/23018958
U2 - 10.1016/j.nimb.2016.09.025
DO - 10.1016/j.nimb.2016.09.025
M3 - Special issue
SN - 0168-583X
VL - 393
SP - 105
EP - 109
JO - Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
JF - Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
T2 - 2016 - COSIRES
Y2 - 19 June 2016 through 24 June 2016
ER -