Non-destructive analysis of swelling in the EMPIrE fuel test

William Hanson, Adam Robinson, Nancy J. Lybeck, Joseph W. Nielsen, Bei Ye, Zhi-Gang Mei, Dennis D. Keiser, Laura M. Jamison, Gerard L. Hofmann, Abdellatif M. Yacout, Ann Leenaers, Bertrand Stepnik, Irina Glagolenko

    Research outputpeer-review


    The European Mini-Plate Irradiation Experiment (EMPIrE) was designed to support the development and testing of a coated uranium-molybdenum (U-Mo) dispersion fuel for the conversion of select high-performance research reactors (HPRRs) to utilize low-enriched uranium (LEU). To aid in the development of the coated fuel form, the EMPIrE test included several plate designs and irradiated them in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR) at a high meat power density (∼21 kW/cm3) and to high fuel particle fission densities (∼6.4 × 1021 fissions/cm3). These conditions mimic the bounding conditions of the BR-2 reactor in Belgium, where a concurrent irradiation experiment was performed, and exceed those previously explored in dispersion U-Mo fuel plates. A local fuel swelling analysis, as determined through high-fidelity, post-irradiation mini-plate profilometry, was used along with statistical methods to non-destructively evaluate the overall performance and separate the effects of convoluted fabrication variables. While some effects observed with this non-destructive analysis were subtle, others had more significant, and possibly competing, effects on the fuel swelling behavior. These observations will be examined further with destructive examinations to more fully assess them as the fuel design is developed and qualified.
    Original languageEnglish
    Article number153683
    Number of pages15
    JournalJournal of Nuclear Materials
    StatePublished - Jun 2022

    Cite this