P2M simulation exercise on past fuel melting irradiation experiments

V. D’Ambrosi, J. Sercombe, S. Bejaoui, A. Chaieb, B. Baurens, R. Largenton, A. Ambard, Brian Boer, Giovanni Bonny, M. Ševeček, L. E. Herranz, F. Feria Marquez, K. Inagaki, H. Ohta, F. Boldt, J. Sappl, R. Armstrong, A. Mohamad, Y. Udagawa, C. CozzoJ. Klouzal, M. Vitezslav, J. Corson, J. Peltonen

    Research outputpeer-review

    8 Scopus citations

    Abstract

    This paper presents the results of the Power To Melt and Maneuverability (P2M) Simulation Exercise on past fuel melting irradiation experiments, organized within the Organisation for Economic Co-operation and Development/Nuclear Energy Agency Framework for IrraDiation ExperimentS (FIDES) framework by the Core Group (CEA, EDF, and SCK‧CEN) and open to all FIDES members. The exercise consisted in simulating two past power ramps where fuel melting was detected: (1) the xM3 staircase power transient [ramp terminal level (RTL) 70 kW‧m−1, average burnup 27 GWd‧tU−1], carried out in 2005 in the R2 reactor at Studsvik (Sweden), where the rodlet maintained its integrity, and (2) the HBC4 fast power transient (RTL 66 kW‧m−1, average burnup 48 GWd‧tU−1), carried out in 1987 in the BR2 reactor at SCK‧CEN (Belgium), where the cladding failed during the experiment. The exercise was joined by 13 organizations from 9 countries using 11 different fuel performance codes. In this paper, the main results of the Simulation Exercise are presented and compared to available postirradiation examinations (PIE) or on-line measurements during the power ramps (fuel and clad diameters, rod elongation, pellet-clad gap, and fission gas release). Since the focus of the Simulation Exercise is on fuel melting assessment, determination of the boundary between melted/nonmelted fuel and the consequent definition of a melting radius from PIE are first discussed. During the HBC4 ramp, fuel melting was predicted by most of the codes despite differences in the melting models. Higher discrepancies were observed for the xM3 rod that can be attributed partly to power uncertainty and partly to the limited capability of the models to describe partial melting of the fuel during this ramp. Finally, possible code developments to improve simulation results are presented.

    Original languageEnglish
    Pages (from-to)189-215
    Number of pages27
    JournalNuclear Technology
    Volume210
    Issue number2
    DOIs
    StatePublished - 2024

    ASJC Scopus subject areas

    • Nuclear and High Energy Physics
    • Nuclear Energy and Engineering
    • Condensed Matter Physics

    Cite this