Potential of four aquatic plant species to remove 60Co from contaminated water under changing experimental conditions

    Research outputpeer-review


    This study aimed to compare the potential of Lemna minor, Spirodela sp., Eichhornia crassipes and Pistia stratiotes to remove 60Co from a realistic aquatic environment. Although all four plant species performed similarly well after 3 days of exposure to 50 kBq L−1 60Co, Lemna minor and Spirodela sp. came forward as having higher 60Co removal potential. This conclusion is, in first instance, based on the high 60Co removal percentage obtained after a short contact time (e.g. more than 95% could be removed after 6 h by Spirodela sp.). Additionally, Lemna minor and Spirodela sp. accumulated a high amount of 60Co per gram of biomass. For example, Lemna minor accumulated over three times more 60Co per gram of biomass compared to Pistia stratiotes and Eichhornia crassipes. Both plants also performed well in the pH range 5–9. We used Lemna minor to test the influence of the initial 60Co concentration (10, 50, 100 and 200 kBq L−1 60Co) on its phytoremediation capacity but no differences could be observed in removal percentage. In addition, it was shown that by optimising the initial amount of biomass, radioactive waste production can be minimised whilst maintaining high 60Co removal rates. Our study shows that these aquatic plants can be used for phytoremediation of 60Co from contaminated water and can be considered as a "green" addition or alternative for conventional remediation techniques.
    Original languageEnglish
    Pages (from-to)27187-27195
    Number of pages11
    JournalEnvironmental Science and Pollution Research
    Issue number27
    StatePublished - 20 Jul 2018

    Cite this