Short rotation coppice for revaluation of contaminated land

H. Vandenhove, Y. Thiry, A. Gommers, F. Goor, J. M. Jossart, Elis Holm, Tobjorn Gaufert, Jorn Roed, A. Grebenkov, S. Timofeyev

    Research outputpeer-review

    Abstract

    When dealing with large-scale environmental contamination, as following the Chernobyl accident, changed land use such that the products of the land are radiologically acceptable and sustain an economic return from the land is a potentially sustainable remediation option. In this paper, willow short rotation coppice (SRC) is evaluated on radiological, technical and economic grounds for W. European and Belarus site conditions. Radiocaesium uptake was studied in a newly established and existing SRC. Only for light-texture soils with low soil potassium should cultivation be restricted to soils with contamination levels below 100-370kBqm-2 given the TFs on these soils (5×10-4 and 2×10-3m2kg-1) and considering the Belarus exemption limit for firewood (740Bqkg-1). In the case of high wood contamination levels (>1000Bqkg-1), power plant personnel working in the vicinity of ash conveyers should be subjected to radiation protection measures. For appropriate soil conditions, potential SRC yields are high. In Belarus, most soils are sandy with a low water retention, for which yield estimates are too low to make production profitable without irrigation. The economic viability should be thoroughly calculated for the prevailing conditions. In W. Europe, SRC production or conversion is not profitable without price incentives. For Belarus, the profitability of SRC on the production side largely depends on crop yield and price of the delivered bio-fuel. Large-scale heat conversion systems seem the most profitable and revenue may be considerable. Electricity routes are usually unprofitable. It could be concluded that energy production from SRC is potentially a radiologically and economically sustainable land use option for contaminated agricultural land.

    Original languageEnglish
    Pages (from-to)157-184
    Number of pages28
    JournalJournal of environmental radioactivity
    Volume56
    Issue number1-2
    DOIs
    StatePublished - 2001

    ASJC Scopus subject areas

    • Environmental Chemistry
    • Waste Management and Disposal
    • Pollution
    • Health, Toxicology and Mutagenesis

    Cite this