Abstract
Skin contamination with radiopharmaceuticals can occur during biomedical research and daily nuclear medicine practice as a result of accidental spills, after contact with bodily fluids of patients or by inattentively touching contaminated materials. Skin dose assessment should be carried out by repeated quantification to map the course of the contamination together with the use of appropriate skin dose rate conversion factors. Contamination is generally characterised by local spots on the palmar surface of the hand and complete decontamination is difficult as a result of percutaneous absorption. This specific issue requires special consideration as to the skin dose rate conversion factors as a measure for the absorbed dose rate to the basal layer of the epidermis. In this work we used Monte Carlo simulations to study the influence of the contamination area, the epidermal thickness and the percutaneous absorption on the absorbed skin dose rate conversion factors for a set of 39 medical radionuclides. The results show that the absorbed dose to the basal layer of the epidermis can differ by up to two orders of magnitude from the operational quantity Hp(0.07) when using an appropriate epidermal thickness in combination with the effect of percutaneous absorption.
Original language | English |
---|---|
Pages (from-to) | 381-393 |
Journal | Journal of Radiological protection |
Volume | 33 |
Issue number | 2 |
DOIs | |
State | Published - 21 Mar 2013 |