Spark plasma sintered tungsten –mechanical properties, irradiation effects and thermal shock performance

Jiri Matejicek, Jakub Veverka, Chao Yin, Monika Vilémová, Dmitry Terentyev, Marius Wirtz, Andrii Dubinko, Hynek Habraba

    Research outputpeer-review

    Abstract

    Tungsten-based materials are the most prospective candidates for the plasma facing components for fu- ture fusion devices, such as DEMO. In order to improve their properties, various modifications are being developed, including composites, alloys, and different processing routes. Spark plasma sintering (SPS) is among the prospective preparation technologies; thanks to the relatively low temperatures and short pro- cessing times, it enables the preservation of fine grain structure, beneficial for radiation resistance. In a previous study, SPS W has shown promising mechanical properties at moderate temperatures, however, the irradiation effects were yet to be investigated. Fine-grained W was prepared by spark plasma sintering. Together with other W-based materials, the sam- ples were neutron-irradiated at the BR2 reactor at 60 0 and 10 0 0 °C up to 0.24 and 0.7 dpa, respectively. Mechanical testing - including tensile test and fracture toughness tests - was performed in irradiated and un-irradiated states in the 20 0–60 0 °C temperature range. Fractographic observations were performed to help in understanding the impact of the irradiation effects on the fracture mechanism. For the SPS W, a shift of DBTT from ~300 °C to ~600 °C due to irradiation was observed. High heat flux testing was carried out in repeated thermal shock mode at the PSI-2 device at room temperature, 400 and 1000 °C and fluxes up to 1.6 GW/m 2 . The results showed rather promising resistance to cracking under these conditions. In these tests, the SPS tungsten showed comparable or better performance than reference, ITER-qualified tungsten material.
    Original languageEnglish
    Article number152518
    Pages (from-to)1-10
    Number of pages10
    JournalJournal of Nuclear Materials
    Volume542
    DOIs
    StatePublished - 11 Sep 2020

    Cite this