System detective quantum efficiency (DQESYS) as an index of performance for chest radiography system (bucky and bedside) at four patient equivalent thicknesses

Sunay Rodriguez Perez, Philippe Moussalli, Hilde Bosmans, Lara Struelens, Nicholas W. Marshall

    Research outputpeer-review

    Abstract

    Imaging performance of a flat panel-based chest radiography system was evaluated using a recently introduced parameter: system detective quantum efficiency (DQE), i.e. DQESYS. The DQESYScalculation includes the signal to noise (SNR) transfer efficiency of the x-ray detector (detector DQE) and of the antiscatter device (DQEASD). Posterior Anterior (PA) and bedside imaging techniques were evaluated using Poly(methyl methacrylate) (PMMA) thicknesses of 90, 130, 160 and 190 mm, equivalent to the lung and mediastinum regions covering a range of three patient sizes. Detector DQE was measured for beams without scatter using aluminum filters with similar half-value-layer (HVL) as the PMMA blocks. The grid efficiency (DQEASD) was calculated from the primary and scatter grid transmissions for the four PMMA thicknesses. Acquisition settings were 120 kV (grid in) for the bucky PA technique and 105 kV (grid out) for bedside imaging. Results showed an increase in the DQESYS for PA examinations with increasing PMMA thickness, opposite to the detector DQE. This can be attributed to the increasing efficiency of the antiscatter grid (i.e. DQEASD) as PMMA thickness is increased, consistent with the expected result that grid use is important for the thicker patients. DQESYS for bedside was lower than for PA, this is because no grid is used for bed examinations and DQESYS reverts to detector DQE. DQESYS was successfully used to evaluate the performance of the system in the presence of scatter radiation with the antiscatter device in place, results showed the importance of this type of devices for chest radiographies
    Original languageEnglish
    Title of host publicationProceedings Volume 10948, Medical Imaging 2019: Physics of Medical Imaging
    PublisherSPIE - The International Society for Optical Engineering
    Pages1-8
    Number of pages8
    Volume10948
    Edition2019
    DOIs
    StatePublished - 1 Mar 2019
    Event2019 - SPIE Medical Imaging - San Diego
    Duration: 16 Feb 201921 Feb 2019
    http://spie.org/conferences-and-exhibitions/medical-imaging?SSO=1

    Conference

    Conference2019 - SPIE Medical Imaging
    Country/TerritoryUnited States
    CitySan Diego
    Period2019-02-162019-02-21
    Internet address

    Cite this