Trapping and release of helium and deuterium in recrystallized and heavily deformed tungsten after plasma exposure

Alexander Bakaev, Dmitry Terentyev, Gregory De Temmerman, L. Cheng, G.-H. Lu

Research outputpeer-review

Abstract

Interaction of tungsten surface with plasma beam has tremendous importance for development of materials for fusion applications. Trapping and release of Helium (He) and Deuterium (D) in tungsten exposed to high flux plasma with varying He and D content are studied here. Recrystallized and plastically deformed tungsten samples were used to clarify the impact of the material microstructure on trapping and release of plasma components. Thermal desorption spectroscopy measurements were performed to reveal the release stages and quantify the integral desorption of both types of molecules. Comparison of reference and plastically deformed samples was used to clarify the impact of plastic deformation (expressed in the high dislocation density and dislocation networks) on the trapping and release processes. It has been demonstrated that in the mixed beam exposures, the integral He release weakly depends on the He/D ratio, but suddenly grows as the fraction of He/D increases from 80/20 to 100/0. The integral release of D is remarkably enhanced by He seeding in both reference and plastically deformed samples. It is concluded that under the mixed beam exposure conditions, the D release is primary controlled by the He seeding and not by the deformation-induced microstructure
Original languageEnglish
Article number2050002
Pages (from-to)1-17
Number of pages17
JournalJournal of Micromechanics and Molecular Physics
Volume5
Issue number1
DOIs
StatePublished - 5 Sep 2020

Cite this