TY - GEN
T1 - Ultrasound in lead-bismuth eutectic
AU - Dierckx, Marc
AU - Van Dyck, Dries
N1 - Score = 3
PY - 2011
Y1 - 2011
N2 - The Belgian Nuclear Research Centre (SCK•CEN) is in the process of designing MYRRHA, a new multi-purpose irradiation facility to replace the ageing BR2. MYRRHA is a fast spectrum reactor cooled with lead-bismuth eutectic (LBE). As liquid metal is opaque to visual light, ultrasonic measurement techniques are selected to fulfill essential tasks that, according to our assessment, will be demanded by licensing authorities, in particular: fuel assembly identification and localization of a lost fuel assembly. To that end, a considerable research effort at SCK•CEN is devoted to study ultrasonic propagation in LBE. As ultrasonic experiments in LBE are elaborate and expensive to set up, we are particularly interested in to what extent experiments in water can be extrapolated to LBE - one of the main focuses of this article. We describe and present results of a first experiment with this goal which shows that the signal to noise ratio is better in LBE and that we even see small diffuse reflections up to 40° off normal. On the other hand, we do not see internal reflections in stainless steel objects in LBE which we do in water. Therefore, we conclude that experiments in water can be used to validate algorithms for LBE on the condition that they do not rely on internal reflections. We also present solutions to tackle the essential tasks: fuel assembly identification and lost object localization. The requirements for the ultrasonic equipment implementing these solutions are also discussed.
AB - The Belgian Nuclear Research Centre (SCK•CEN) is in the process of designing MYRRHA, a new multi-purpose irradiation facility to replace the ageing BR2. MYRRHA is a fast spectrum reactor cooled with lead-bismuth eutectic (LBE). As liquid metal is opaque to visual light, ultrasonic measurement techniques are selected to fulfill essential tasks that, according to our assessment, will be demanded by licensing authorities, in particular: fuel assembly identification and localization of a lost fuel assembly. To that end, a considerable research effort at SCK•CEN is devoted to study ultrasonic propagation in LBE. As ultrasonic experiments in LBE are elaborate and expensive to set up, we are particularly interested in to what extent experiments in water can be extrapolated to LBE - one of the main focuses of this article. We describe and present results of a first experiment with this goal which shows that the signal to noise ratio is better in LBE and that we even see small diffuse reflections up to 40° off normal. On the other hand, we do not see internal reflections in stainless steel objects in LBE which we do in water. Therefore, we conclude that experiments in water can be used to validate algorithms for LBE on the condition that they do not rely on internal reflections. We also present solutions to tackle the essential tasks: fuel assembly identification and lost object localization. The requirements for the ultrasonic equipment implementing these solutions are also discussed.
KW - LBE
KW - Ultrasound
KW - MYRRHA
UR - http://ecm.sckcen.be/OTCS/llisapi.dll/open/ezp_114004
U2 - 10.1109/ANIMMA.2011.6172945
DO - 10.1109/ANIMMA.2011.6172945
M3 - In-proceedings paper
SN - 9781457709265
T3 - ANIMMA 2011 - Proceedings: 2nd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications
BT - ANIMMA 2011 - Proceedings
CY - United States
T2 - 2011 - ANIMMA - Advancements in Nuclear Instrumentation Measurement Methods and their Applications
Y2 - 6 June 2011 through 9 June 2011
ER -